Explainable Machine Learning Methods for Classification of Brain States during Visual Perception

نویسندگان

چکیده

The aim of this work is to find a good mathematical model for the classification brain states during visual perception with focus on interpretability results. To achieve it, we use deep learning models different activation functions and optimization methods their comparison best considered dataset 31 EEG channels trials. estimate influence features process make method more interpretable, SHAP library technique. We that Adagrad worst one FTRL. In addition, only works well both linear tangent models. results could be useful EEG-based brain–computer interfaces (BCIs) in part choosing appropriate machine correct training BCI intelligent system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Visual Analytics for Explainable Deep Learning

Recently, deep learning has been advancing the state of the art in artificial intelligence to a new level, and humans rely on artificial intelligence techniques more than ever. However, even with such unprecedented advancements, the lack of explanation regarding the decisions made by deep learning models and absence of control over their internal processes act as major drawbacks in critical dec...

متن کامل

Machine Learning Methods for Climbing Route Classification

Classifying the difficulty of climbing routes is a challenging and subjective task, even for experienced climbers. This project builds on previous work [6] and evaluated several algorithms to aid in this process. Data was sourced from a standard climbing wall (the Moonboard) found in gyms around the world. Three different models were explored for classification: Naive Bayes, softmax regression,...

متن کامل

Decoding Brain States during Auditory Perception by Supervising Unsupervised Learning

The last years have seen a rise of interest in using electroencephalography-based brain computer interfacing methodology for investigating non-medical questions, beyond the purpose of communication and control. One of these novel applications is to examine how signal quality is being processed neurally, which is of particular interest for industry, besides providing neuroscientific insights. As...

متن کامل

Machine Learning methods for E-mail Classification

The increasing volume of unsolicited bulk e-mail (also known as spam) has generated a need for reliable antispam filters. Using a classifier based on machine learning techniques to automatically filter out spam email has drawn many researchers attention. In this paper we review some of the most popular machine learning methods (Bayesian classification, k-NN, ANNs, SVMs, Artificial immune system...

متن کامل

Machine Learning Methods for Fault Classification

With the constant evolution and ever-increasing transistor densities in semiconductor technology, error rates are on the rise. Errors that occur on semiconductor chips can be attributed to permanent, transient or intermittent faults. Out of these errors, once permanent errors appear, they do not go away and once intermittent faults appear on chips, the probability that they will occur again is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2022

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math10152819